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ORBITAL ANALYSIS BY
SLEIGHT OF HAND

A review of manual, intuitive satellite

odern digital computers, along with
Mlow—cosl, high-power software, have

been indispensable tools in the quest
to communicate via orbiting satellite. Tracking
software has become so ubiquitous that a whole
generation of enthusiasts is unaware that there
once was another way to track the early
OSCARs. While I'm not opposed to progress,
I am of the opinion that the magical computer
tends to separate its user from the basics of the
underlying application. Through a review of
manual, intuitive satellite tracking techniques,
we can gain a more thorough understanding of
the rather simple forces of nature underlying
those mystical Keplerian Elements.

Introduction

There is a curious object on display in my
classroom—a pancake-flat Plexiglas ™ disk
about a half meter in diameter. A North polar
projection map of the earth appears on one side
of the disk, and a South polar projection appears
on the other. Sandwiching this pre-Columbian
globe are two transparent overlays, pinned to the
poles with a robust grommet so as to rotate
freely. On the rotating panels, great arcing lines
with cryptic notations are inscribed in grease
pencil. The object looks very much its part—an
icon to the high priest of satellite navigation.

You probably know this device as an Oscar-
Locator, a graphical aid to satellite tracking.
This granddaddy of all Oscar-Locators was in
fact the original OSCAR 1 orbital plotting

board, preserved throughout these countless
generations of amateur radio satellites. We
called it a Satelabe then—a word derived from
Astrolabe—the navigational instrument that
guided explorers across un-charted oceans from
ancient times until the development of the sex-
tant in the 18th Century. Even though my stu-
dents would relegate it, along with my Osborne
1 computer and log-log-decitrig slide rule, to
the musty, dusty shelves of a technology muse-
um, I keep it for the most utilitarian of rea-
sons—because it still works.

The early days

The microcomputer is today as indispensable
a part of the world of satellite communications
as the mini-HT is to amateur radio. Starting
with Dr. Tom Clark’s legendary BASIC Orbits
program and continuing up through the present
software array with its dazzling high-resolution
graphics, we all have tools at our disposal, the
likes of which NASA could only dream about
during the days of Apollo. Yet in those eras of
antiquity, BC (Before the Computer), a handful
of dedicated visionaries managed to conceive,
construct, and connive into orbit, the world’s
first non-Government sponsored artificial Earth
satellite. They did so with tools that today
would be considered laughably crude, but they
did it. They left us AMSAT as their legacy.
They left us their Satelabe, as a reminder.

1 was not really one of the original OSCAR
cadre, although I sat at their feet in awe. As a
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high school student sitting quietly in the back
of the room, watching my heroes concoct their
minor miracle, I said to myself: “Some day,
when 1 grow up, this is what I want to do.” And
someday, when I grow up, I will.*

In the meantime, I’ve been privileged to
teach satellite communications to a whole gen-
eration of technologists. Only their way, it’s
hard to tell where the computer ends and the
technician begins. Armed with their silicon
ephemera, they manipulate Keplerian Elements
to the twelfth significant figure, produce orbital
predictions in double precision, and haven’t the
foggiest idea what they all mean.

An old tool

That’s where the Satelabe comes in. By using
this old tool, and applying mathematical con-
cepts no more advanced than those available to
the ancients, one can visualize the balance of
forces that hold a satellite in its orbit. With
purely manual techniques, one can perform
orbital analysis to far less accuracy, but with far
greater clarity than can be accomplished by
digital computer.

That’s also what this article is all about. In it,
I'll review a few of the basics of the satellite
orbit, armed with nothing but a pencil and a
pocket calculator (a few years ago, I would
have said slide rule). Although I doubt I'll ever
wean you from the MegaTrak 1000 program
running on your 100-MHz 80686 with the giga-
byte hard drive, I hope to remind those of you
who might have forgotten, what’s really going
on behind the zillion-pixel screen, back in the
land where the ones and zeros cavort in wild
abandon.

Circles and ellipses: an
eccentric view

A good place to start our description of the
orbits of communications satellites is with a
review of the most historically significant con-
troversy in astronomy-—the nature of our solar
system. Probably the first to propose a helio-
centric theory of the universe was the Greek
astronomer Aristarchus of Samos (circa 310-
230 BCE). His view received little attention
from the ancients, who favored a geocentric

*Okay, I exaggerate my modesty slightly. I have had a minor role in all of
this, rising through the ranks of Project OSCAR volunteers to eventually
become Technical Director, and then Chairman of the Board, a position I held
until 1990.

**To visualize this rather convoluted scheme, think of the popular carnival
ride called the Tilt-a-Whirl. Each rider (planet) sits on a cart. The cart sits on a
platform that describes a circular orbit (deferent), while whipping around in its
own circular sub-orbit (epicycle).

**+Eccentricity is a measure of the “lopsidedness” of any ellipse, on a range of
0'to 1. Values approaching O represent a round, and those approaching [ rep-
resent a flat shape.

scheme, as later formalized by the Greco-
Egyptian mathematician Claudius Ptolemaeus
in the 2nd century CE. In Ptolemy’s system,
simple circular motion was used to describe the
motion of all visible celestial bodies around the
earth. The apparent retrograde motion of the
planets was explained by a rather complicated
system of epicycles on deferents.** Still, pre-
dictions of celestial events based upon the
Ptolemaic system were crude at best.

The great Polish astronomer Nicholas
Copernicus may well have been trying to
smooth out some of the inconsistencies in the
Ptolemaic system’s prediction of eclipses. He
was probably the first astronomer since
Aristarchus to propose anew a heliocentric solar
system (De Reviutionibus Orbius Coelestium,
1543). Although he placed the Sun in its rightful
place, his system still retained a variant on
epicycles to explain retrograde motion. Circular
orbits, it seemed, were tricky things.

Tycho Brahe was a renowned fence sitter.
Unable to decide the relative merits of the
Ptolemic and Copernican systems for himself,
he created one of his own, incorporating ele-
ments of each. This Danish astronomer saw an
immobile earth around which the sun revolved,
with the other five known planets then revolv-
ing around the Sun. To support his model, he
recorded a lifetime of observations of the plan-
ets, the Moon, and Supernova 1572. His excel-
lent observations, published posthumously by
Kepler (in Tabulae Rudolphinae, 1627) led to
the breakthrough that eliminated the inconsis-
tencies in all earlier solar system models.
Indirectly, it also gave us our most powerful
tools for satellite orbital analysis—the
Keplerian Elements.

Professor of mathematics at Graz, Johannes
Kepler proposed in 1609 (in Astronomia Nova)
that planetary motion could be described not by
circles, but by ellipses. He showed that any
planet (and by extrapolation, satellite) must
orbit in an ellipse with its primary at one focus.
His laws of motion further described the
change of orbital velocity required throughout a
stable elliptical orbit, and explained
(Harmonice Mundi, 1619) the interrelationship
between the size of the ellipse and the orbital
period. Kepler’s elliptical orbits made possible
a full understanding of not only the heliocentric
solar system, but three and a half centuries
later, the orbit of your favorite OSCAR.

It is important to note here that a circle is sim-
ply a special case of an ellipse, one whose
eccentricity equals zero.** Since our earliest
artificial earth satellites (Sputnik I, OSCAR 1,
etc.) all had low eccentricities, we tended to ana-
lyze their orbits as circular. That’s where the
early OscarLocator came in. It turns out that the
motion (relative to an observer on the ground) of



a satellite in circular orbit can be easily
described as an arc on a polar projection map.
The Satelabe is such an arc on a map. With it,
we can not only extrapolate any orbit into the
future for prediction of Acquisition of Signal
(AOS) and Loss of Signal (LOS) at a ground
location, but we can also project required anten-
na bearings (azimuth and elevation) for a given
pass, and predict mutual satellite visibility for
two ground stations. Useful, no?

More complicated orbits (such as the highly
eccentric Phase Il and Molniya satellites) defy
such simple graphical analysis because their
ground tracks tend to corkscrew, and do not
necessarily repeat over time. It is for such
orbits that tracking software really shines.
However, we still have a good number of use-
ful satellites in nearly circular orbits (PAC-
SATS, MicroSats, MIR, space shuttles, various
weather satellites, and of course the most useful
Clarke, or geosynchronous, orbit). All but the
latter (which stands motionless in the sky, from
our terrestrial vantage point) can benefit from
Satelabe analysis.

The ideal orbit

We will begin our analysis of satellite orbits
by making quite a few simplifying assump-
tions. For starters, let’s consider an artificial
satellite in perfectly circular orbit (that is,
eccentricity of zero) around a perfectly spheri-
cal earth of uniform density, with no atmos-
phere. Of course, our planet is both lumpy and
oblate (wider at the equator than at the poles,
by about 0.1 percent or so); however, ignoring
these details simplifies orbital analysis. We will
correct for reality later. Similarly, let’s turn an
n-body problem (one which includes the gravi-
tational effects of the moon, sun, planets, and
stars) into a much simpler 2-body problem, by
pretending that nothing exists but our satellite
orbiting such a perfect planet.

For this simple and ideal case, only two
influences determine the motion of the satellite
around its primary: the force of gravity (pulling
the satellite toward Earth), and the pseudo-
force of the inertia (pulling the satellite away
from Earth). Further, for a stable orbit (one that
does not change over time), these two forces
must be balanced, in exact equilibrium.
Because we can define both gravity and inertia
mathematically, and set the two equal to each
other, we produce what I call the Basic Orbital
Equation. I'll spare you the derivation (it
appears in the literature) and cut to the result:
mV2 GMm 1)
T - 12

In Equation 1, little m stands for the satel-

lite’s mass, big M for the mass of the earth, V
for the satellite’s velocity, r for the radius of its
orbit, and G for Newton’s universal gravita-
tional constant. The left-hand expression relates
to inertia, and the right-hand side to gravity. As
I said, a stable orbit requires that the two be
equal. What’s interesting about this equation is
that it can be simplified. The r in the left-hand
denominator can cancel one of the r’s in the
right. The m’s in the two numerators can can-
cel. This leaves us with:

GM

T
which is not only simpler, but allows us to
draw some interesting conclusions. For one
thing, you’ll see that Equation 2 makes no ref-
erence at all to the mass of the satellite. The
orbital behavior of any satellite appears inde-
pendent of its mass!* Periodically, my students
try to sell me on the notion that the mass of the
satellite is absent from Equation 2 because it’s
negligible relative to that of the earth, thus can
be ignored. Negligible though it may be, this is
not the reason. You can see from the above
that, when equating inertia to gravity, the satel-
lite’s mass cancels.

The next interesting thing we can learn from
this equation is that orbital radius varies
inversely with the square of velocity. So you
see that as you move a satellite closer to earth,
it moves faster. And (because the relationship
is a square), if you place it really close to earth,
it moves really fast. This is consistent with our
observations. The space shuttle, only a couple
of hundred kilometers up, zips right along,
orbiting our planet in about an hour and a half.
Our natural satellite, the Moon, is closer to
400,000 km up. It meanders across the sky, tak-
ing a whole moonth—er, month—to orbit.
Also, at an intermediate distance of 36,000 km,
satellites in the so-called Clarke** or geosyn-
chronous orbit move at moderate speeds, orbit-
ing the Earth in exactly 24 hours.

Notice now what appears in the numerator at
the right of Equation 2. Contrary to popular
belief, the GM product is not a Chevy. Rather,
it is a constant for all satellites orbiting the
earth. If we know this value (and we do: 4 x
1014 m?/s3), we can easily calculate the veloci-
ty for a satellite orbiting at any radius, or the
orbital radial that would correspond to any
velocity. Try this, for example: What is the

V2= (2)

*The launch of a satellite into its given orbit, on the other hand, is highly mass
dependent. The more massive the satellite, the more thrust is necessary to
insert it into its orbit. You have to kick the football hard, so it will not only
sail high enough 10 clear the goal post, but will also be moving fast enough
not 10 fall short of the goal line. That is why, for example, the Jaunch for a
heavy Phase 111 D is so much more costly than that for a MicroSat. Did you
ever wonder how we kick a Phase 111 football into its intended orbit? Why
with an Apogee Kick Motor, of course!

**Named for Arthur Charles Clarke, communications engineer and science
fiction author who first proposed this orbit in a 1945 Wireless World article.
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fastest possible velocity for a satellite orbiting
our ideal earth?

Well, we know from Equation 2 that the
lower the orbit, the faster the velocity. So, what
is the lowest possible orbital radius? If we
ignore atmospheric drag, trees, mountains, and
tall buildings, and rule out subterranean orbits
(the tunnel isn’t finished yet), that would be the
radius of the Earth—about 6370 km. Plugging
this r, and the GM product, into Equation 2, we
come up with a speed of about 7900 meters per
second, or 17,700 mph. So now we know the top
speed for your satellite, or my motorcycle.

But what about Evel Knievel’s motorcycle?
Rumor has it his rocket-powered monster can
exceed the speed we just computed! What will
happen to him if it does? Maximum orbital
velocity is also called escape velocity. Any-
thing that exceeds this speed will break free of
earth’s gravity (or more properly, will find
inertia exceeding the force of gravity). So, in
excess of 17,700 mph, Mr. Knievel will find
himself flying free of Earth’s influence, depart-
ing into outer space. (Some say he’s already
there.) In fact, any interplanetary spacecraft
must be accelerated to beyond escape velocity.

Our next task is to determine orbital period—
the time required for our satellite to circumnav-
igate the Earth exactly once. If we know orbital
radius, we also know circumference, or the dis-
tance the satellite travels in one orbit. Because
a circle contains 2« radians, the distance trav-
eled in one orbit equals 27R. At the velocity
calculated with Equation 2, orbital period is: t
=d/v, so:

t=2x (3 /GM)!12 3

We can now do what Clarke did 50 years
ago—compute the required orbital altitude to
achieve geosynchronicity. This requires us to
rearrange Equation 3 to solve for r—an opera-
tion that is a bit awkward, but not an algebraic
impossibility. Let’s see now, if I did this right:

r=(GM 2/ 4n2)1/3 @

Plugging in the orbital period required to
synchronize with the Earth’s rotation (24 hours,
or 86,400 seconds), and our old friend the
Chevy—er, GM product, the above gives us an
orbital radius of about 42,290 km. Subtracting
the Earth’s 6370 km radius leaves us with a
satellite 35,920 km above our planet. Within
the constraint of our simplifying assumptions
and round-off errors, that’s exactly where
Clarke said it should be.

Orbital increment defined

Let’s return for a minute to this business of a

spinning Earth. The Earth’s rotation means that
if a satellite orbits our planet exactly once, it
will not necessarily come back to rest above the
same point on Earth from which it started.
Consider, for example, a polar orbit with a two-
hour period. Say our satellite crosses the equa-
tor northbound (at a right angle), zips over the
North Pole, crosses the equator southbound
(again at a right angle), slips under the South
Pole, and then returns northbound to the equa-
tor again. While all this has been happening,
the earth has been spinning eastward, about
1000 mph worth at the equator. Now, if we
note the point on the Earth over which the first
northbound equator crossing took place (we
call this point the orbit’s ascending node), and
then note where the next ascending node
occurs, the second ascending node point is
going to be about 2000 miles west of the first.

Incidentally, the vector sum of those two cir-
cular motions (the satellite’s orbit and the
Earth’s rotation) describes a sinusoid. This is
the source of those sine-wavy ground track
lines on the flat map at Mission Control, which
you’ve seen on the TV news. Now, the distance
along the equator between two successive
ascending notes is called orbital increment, or
westward progression, and is measured, not in
miles, but in degrees of longitude on that same
flat map in Houston. Since our planet spins 360
degrees every 24 hours (more or less), the earth
has spun about two twenty-fourths of 360
degrees, or about 30 degrees, during the course
of a two-hour orbit. This means the two succes-
sive ascending nodes are 30 degrees apart; the
orbital increment is 30 degrees.

But wait, there’s an easier way. If we contin-
ue to consider our ideal, two-body problem,
ignore the motion of the earth and its retinue of
satellites about the sun, and accept our simpli-
fied view of a perfectly spherical earth of uni-
form density, then orbital increment is simple
to estimate. Increment (in degrees) will equal
exactly the orbital period (in minutes) divided
by four! This can be readily proven by dimen-
sional analysis, but trust me.

With the Satelabe, we use orbital increment
to plot successive orbits. Say we know the
equatorial crossing longitude in the ascending
node for a given orbit. We lay the edge of our
OscarLocator cursor over that longitude on the
plotter, and the curved cursor shows the path
the spacecraft will take over the Earth for the
succeeding half orbit. To forecast the next
orbit, we estimate increment by dividing period
by four, add increment to the previous crossing
longitude, move the cursor, and start again. An
example: During a recent space shuttle mission,
the orbital period was exactly 1 hour, 30.4 min-
utes. That’s 90.4 minutes, which, divided by
four, gives us an orbital increment of 22.6



degrees. On one orbit of that mission, the shut-
tle crossed the equator northbound at a longi-
tude of 72.6 degrees west, at exactly 2145:30
Zulu. At exactly 2315:54 Zulu, 90.4 minutes
later, the shuttle would cross the equator north-
bound again, at a latitude of 72.6 degrees +
22.6 degrees of increment, which equals about
95.2 degrees west.

How far up was that space shuttle? An orbital
period of 90.4 minutes equates to 5424 sec-
onds. From Equation 4, the orbital radius
equals 6680 km. Subtracting the Earth’s 6370
km radius, we see that the shuttle is only 310
km up. No wonder the overhead SAREX sig-
nals are so strong!

We still occasionally find equatorial crossing
times for various ham satellites published in the
AMSAT literature. If you know what ascending
node value will bring the satellite overhead at
your location, you can extrapolate from any
given crossing time using the above method to
estimate your next AOS.

And now, redlity intrudes

The above computations work well for our
ideal, circular orbit; but what happens when we
consider the more general case of Kepler’s
famous ellipse? Even in elliptical orbit, gravity
and inertia must always be in equilibrium.
Because the distance between the satellite and
its primary varies along the elliptical path, the
force of gravity is ever changing. This requires
a like change in inertia throughout the orbit,
which is only possible if the satellite speeds up
and slows down.

In fact, the orbital velocity of a satellite in
elliptical orbit does indeed vary, from maxi-
mum at perigee (the point of the orbit that
brings the satellite closest to the earth) to mini-
mum at apogee (the point of farthest separation
between satellite and earth). We can readily
compute apogee radius as the sum of apogee
height plus the Earth’s radius. We can insert
this value into Equation 2 to determine the
satellite’s velocity at apogee. In a similar fash-
ion, we can use perigee radius to compute the
satellite’s velocity at perigee. The mean orbital
velocity will be somewhere between those two
values, although we would need to apply some
calculus to determine an exact value.

Since the distance between earth and elliptical
satellite is ever changing, we can’t directly
apply Equation 3 to determine orbital period.
Also, although calculus gives us an exact solu-
tion, here’s a simple first-order approximation.
Compute period per Equation 3 for a circular
orbit with radius equal to your satellite’s apogee.
Do the same for perigee. Your satellite’s actual
orbital period is roughly between these two val-
ues. For example, a satellite in synchronous

transfer orbit has its apogee at Clarke altitudes
(the resulting period, for a circular orbit, would
be 24 hours), and its perigee at space shuttle alti-
tudes (corresponding period an hour and a half).
The midpoint between these two values is just
under 13 hours, which comes close to transfer
orbit period.

Remember our myth of a uniform spherical
earth? I guess you know by now that it simply
isn’t true. After all, our planet is a spinning
body. Four billion years of spin have made the
earth oblate—wider at the equator than across
the poles. This happens to people in middle
age. The more we spin, the wider we get at the
equator. We’re not obese, just oblate.

The same is true of our neighboring planets,
the sun, and the stars in general. The inertia of
a spinning body slings some of its matter out-
ward, and makes it bulge. Even if we start with
a perfectly circular orbit, this satellite bulge
will cause the force of gravity to vary as the
satellite circles the Earth. Because inertia and
gravity must balance, the satellite will speed up
and slow down, making its orbit wobble. We
call this orbital wobble oblateness precession,
and we can quantify it, although you don’t real-
ly want to see the equation.

Well, okay, if you insist:

0 =9.964 % [(R, +h) /R 7D 4 [1 —e2]2
Cos i (5)

See what I mean? The important thing at this
point is not to compute oblateness precession,
but to recognize its effect—which is to make
the satellite slip a little to the East with every
orbit. So there goes our nice, simple estimate of
orbital increment, right out the window. This
explains, in part, the cumulative error in extrap-
olating equator crossings from a satellite’s
orbital period. In the short term, the estimates
are acceptable for communications. However
over days or weeks, a new ascending node
observation becomes necessary in order to
obtain acceptable OscarLocator results.

The next simplification to disprove is the
notion of a stationary earth. Remember that our
planet is moving around the sun at a rate of
(360 degrees/year)/(365.242 days/year) =
0.985673 degrees/Day. Consequently, if we
performed a simplified orbital analysis based
upon the assumption of a stationary earth, the
satellite would accumulate a westward error of
almost a degree per day, when measured with
respect to the Earth’s surface.

For communications purposes, we must
describe the satellite’s orbit with respect to the
earth’s surface—that’s where we are!
Unfortunately, at almost a degree per dayj, it
doesn’t take many days for our accumulated
OscarLocator error to become substantial. This
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is why, in practice, we try to obtain a new
equatorial crossing point every couple of days.
The Satelabe user gets these from computer-
generated orbital prediction tables, which take
into account the sidereal precession.

Did you happen to notice that the errors from
sidereal and oblateness precession accumulate
in opposite directions, one toward the East and
the other toward the West? This means there is
a possibility that we can design an orbit where
the two effects will cancel, and we can achieve
a reasonable approximation of our ideal orbit.
Such an orbit does indeed exist, and it’s called
heliosynchronous, or sun-synchronous.

Satellites in sun-synchronous orbit will trace
a ground track that repeats from day to day.
This is most useful for earth resource assess-
ment, and is used by NASA for many of its
environmental and weather satellites. However
for communications satellites, the sun-synchro-
nous orbit has a number of advantages beyond
simplicity of orbital calculation. One is that the
spacecraft can be placed in perpetual sun-
light—a useful feature for systems that derive
their electrical power from the sun. Another is
that a satellite in a properly designed sun-syn-
chronous orbit can, over time, provide commu-
nications access to all points on the surface of
the Earth. This is handy in packet store-and-
forward applications. AMSAT’s early Phase II
satellites were all in heliosynchronous orbit, as
are some of the newer MicroSats.

The final orbital simplification, the two-body
assumption, is the most difficult to dispel. Our
solar system has been described as being com-
posed of the Sun, Jupiter, and assorted debris.
All of it, even the debris, tugs on our satellite. I
know of no simple algorithm for dispensing
with the gravitational effects on an Earth satel-
lite’s orbit of the Sun, Moon, and planets. The
computations are so complex as to defy manual
solution. Here, then, is an area where comput-
erized orbital analysis is not only justified, but
really comes into its own.

Describing the orbit: size and
shape

We can’t use a computer to analyze an orbit
unless we have a means for describing that
orbit mathematically. The standard description
of orbits used in the current generation of
AMSAT tracking programs is the modified
Keplerian element set, a collection of numbers
that allows us to extrapolate the satellite’s
motion over time. The balance of this article is

" devoted to describing the Keplerian elements in

conceptual, rather than computational, terms.
We’ve already seen how we can define the
“roundness” of an orbit by its eccentricity,

abbreviated e, on a scale of zero to one.
Eccentricity, the first of our Keplerian ele-
ments, actually describes the shape of an ellipse
quite completely. For current ham satellites,
orbital eccentricities range from a low of
approximately 0.00076 (UOSAT OSCAR 22)
to a high of 0.72 (AMSAT OSCAR 13). That’s
a range of three orders of magnitude, and
encompasses orbits from almost perfectly cir-
cular to very highly elongated.

Of course, the number of different orbits that
could share the same eccentricity is infinite.
Once having described the shape of our orbit,
we next need to quantify its size. This can be
accomplished in several different ways. The size
of a given ellipse can be described by measuring
the distance across it in the longest direction
(Major Axis) or in the shortest direction (Minor
Axis). These two axes intersect at right angles,
midway between the two foci of the ellipse. We
sometimes define orbital size in terms of half
these values (Semi-Major Axis or Semi-Minor
Axis). Similarly, apogee and perigee radii (the
sum of which equals Major Axis) will define the
size of the ellipse. We could also use orbital dis-
tance, the “circumference” of the ellipse.

Another way to define the orbit’s size is in
terms not of dimensions, but rather time. Here
we would invoke the elliptical equivalent of
Equation 3. Because the larger the ellipse, the
longer the orbital period, if we know the period
and eccentricity, we can determine all the criti-
cal dimensions of the ellipse. This is almost
how we define orbital size when using satellite
tracking software, but not quite.

Consider that a sine wave can be described
either by its frequency (in cycles per second) or,
alternatively, by its period (in seconds per
cycle). The latter is what we measure on an
oscilloscope and is readily converted to the for-
mer, because the two are reciprocals. In like
fashion, the reciprocal of orbital period is orbital
frequency, or mean motion. As a Keplerian
Element, mean motion is abbreviated N, and is
typically measured in orbits per day. Our current
crop of satellites have mean motions ranging
from 2.059 orbits per day (AMSAT OSCAR 10)
up to 14.69 orbits per day (UOSAT OSCAR
11). The higher the mean motion, the shorter the
orbital period, and the smaller the orbit.

Eccentricity e and mean motion N adequately
define the size and shape of an orbit. It now
remains for us to define the orientation of the
orbit in space, and the location of the satellite
within the orbit for any given point in time.

Describing the orbit: roll, pitch,
and yow

Just as aircraft require three angles (roll, pitch,



and yaw) to describe their orientation with
respect to the Earth, so can we locate our ellipti-
cal orbit in three-dimensional space by develop-
ing three appropriate Keplerian Elements. The
“roll” parameter refers to the angle between the
satellite’s orbit and the Earth’s equator, mea-
sured at the ascending node. This angle is called
inclination, is measured in degrees, and is abbre-
viated i. An inclination of zero degrees means
the satellite’s orbit always remains over the
equator, with the satellite moving eastward.
Clarke orbits are an example of 0 degrees incli-
nation. Another possible equatorial orbit, with
the satellite moving westward, would have a 180
degree inclination. A polar orbit has an inclina-
tion of exactly 90 degrees.

Any inclination between 0 and 90 degrees
defines a prograde orbit. This means that the
satellite’s horizontal motion is in the same
direction as the Earth’s rotation. Any inclina-
tion between 90 and 180 degrees makes for a
retrograde orbit, with the satellite’s lateral
motion opposite the direction of the Earth’s
rotation. Prograde orbits are easier to achieve,
because the eastward rotation of the Earth gives
us some free thrust at launch time. In fact, the
closer to the equator we move our launch site,
the more of this free thrust is available. This is
why the European Space Agency maintains its
launch facility at Kouru, Guiana, practically on
the equator.*

A retrograde orbit. with an inclination slight-
ly above 90 degrees, is required to achieve sun-
synchronicity. This is because Cos i in
Equation 5 needs to be negative to give oblate-
ness precession its proper direction to over-
come sidereal precession. As a result, launch to
heliosynchronous orbit is most readily achieved
from extreme northern or southern launch sites,
where there is less of the Earth’s eastward rota-
tional velocity to overcome.

Currently, our most nearly polar prograde
satellites, AMSAT OSCAR 21 and Radio
Sputnik 12/13, have inclinations on the order of
83 degrees. Our most nearly polar retrograde
satellites, OSCARs 14, 16, 17, 18, 19, 20, 22,
25, 26, and 27, all have inclinations on the
order of 98 degrees. (See, I told you heliosyn-
chronous orbits are popular.) Our most equator-
ial ham satellite OSCAR 10, currently has
about a 27-degree inclination.

For our “pitch” parameter, we locate the
orbit’s perigee point in degrees with respect to
the earth’s equator. Consider that perigee of an
orbit, like the nose of aircraft, can be oriented
up or down. An Argument of Perigee (abbrevi-
ated w) of 0 to 180 degrees indicates perigee in
the Southern Hemisphere, with w = 90 degrees
meaning perigee occurred over the South Pole.
Values of w between 180 and 360 degrees
mean that perigee occurred in the Northern

Hemisphere, with w = 270 degrees placing
perigee over the North Pole.

Our reference for Argument of Perigee was
the Earth’s equator. However in order to define
“yaw,” we need an external celestial longitudi-
nal reference. The First Point of Aries, a fixed
point in space by which we define the beginning
of spring, is such a reference. If we draw a line
from this reference point to the center of the
Earth, and another line from the center of the
Earth to the orbit’s ascending node (northbound
equator crossing), then the angle between these
lines is our third orbital attitude parameter. This
Keplerian element is called Right Ascension of
the Ascending Node (RAAN), and is generally
abbreviated Q. Of course, since our planet is
both spinning and orbiting the sun, € is not sta-
ble, but varies over time. .

The Keplerian Elements Q, w, and i give us
three degrees of freedom, by which we can
completely describe the orientation or our ellip-
tical orbit in three-dimensional space. This
leaves us with but one problem yet to solve:
Just where within that orbit is our satellite at
any given moment?

Describing the orbit: location,
location, and location

Before we can say where a satellite is now,
we have to know where it was rhen. But when
is then? We need to make an observation and
clearly document exactly when that observation
was made. Epoch Time, T, is the exact time at
which a positional reading was taken. It is nor-
mally entered into tracking software as year,
day of year, and fraction of a day since 0000:00
hours. Looking up T for an OSCAR in a recent
orbital elements printout, I see a value of:
05159.69677441. This is interpreted as Year =
1995, Day = 159 (that’s June 9th), and Time =
(0.69677441 * 24 hours), which comes out to
about 16 hours, 43 minutes, 21.3 seconds.
Don’t worry, the tracking software will do the
conversion for you.

So much for the when. Now how about the
where? At Epoch T, we locate the satellite in its
orbit. We use perigee as our reference point. If
we divide the orbit into 360 increments that are
equal by time (not equally spaced in position),
we can measure how long since perigee, on a
scale of 0 to 359. 1t’s important to note that,
even though we measure this parameter on a
scale of 0 to 359 (and even call the unit
“degrees”), this is not an angular measure of the
satellite’s position. Rather, mean anomaly
(abbreviated M) tells us what time fraction of an

*As the old Greek philosopher Will Rogers said, “There ain’t no free launch . . .
but a little extra thrust reduces the cost.”
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